CHAPTER 6. Projection Methods. Let A R n n. Solve Ax = f. Find an approximate solution ˆx K such that r = f Aˆx L.

Size: px
Start display at page:

Download "CHAPTER 6. Projection Methods. Let A R n n. Solve Ax = f. Find an approximate solution ˆx K such that r = f Aˆx L."

Transcription

1 Projection Methods CHAPTER 6 Let A R n n. Solve Ax = f. Find an approximate solution ˆx K such that r = f Aˆx L. V (n m) = [v, v 2,..., v m ] basis of K W (n m) = [w, w 2,..., w m ] basis of L Let x 0 be an initial iterate ˆx = x 0 + V y ˆr = f Aˆx = f A(x 0 + V y) = r 0 AV y. From W Tˆr = 0, or W T (r 0 AV y) = 0, we have the system (W T AV )y = W T r 0 which we need to solve for y. Thus, Scheme: Do until convergence select a pair of subspaces K and L choose bases V and W r = f Ax y = (W T AV ) W T r x := x + V y EndDo ˆx = x 0 + V (W T AV ) W T r 0. Note that the approximate solution is defined only when (W T AV ) is nonsingular, which is not guaranteed for any K and L even if A is nonsingular.

2 Example: Let A = 0 I m I m I m. If V = W = (e, e 2,..., e m ) = I m, then 0 W T AV = (I m, 0) 0 I m I m I m = (0, I m ) I m = 0. 0 I m 0 Theorem: Let A, K, and L satisfy either one of the following two conditions: (a) A is s.p.d. and L = K. (b) A is nonsingular and L = AK. Then B = W T AV is nonsingular for any bases V and W of K and L. Proof: (a) A := s.p.d. and L K W = V G nonsingular B = W T AV = G T V T AV }{{} s.p.d. nonsingular B is nonsingular (b) L = AK W = AV G B = W T AV = G T V T (A T A)V }{{} s.p.d. B is nonsingular 2

3 Two Optimality Results () A is s.p.d. ; W = V G where where x is the exact solution of Ax = f. Proof: E(x) = (x T x T )(Ax Ax) = (x T x T )(f Ax). E(ˆx) = min ˆx x 0 +K E(x) E 2 (x) = (x x) T A(x x) = x x 2 A Thus, for ˆx to be a minimizer of E(x) it is necessary and sufficient that V T ˆr = 0. Let d 0 = x x 0, and ˆd = x ˆx, where ˆx = x 0 + x. Thus, and i.e., (d 0 x, v) A = 0 for all v K. Aˆd = Ax Aˆx = A(d 0 x) = f Aˆx = ˆr, V T ˆr = V T Aˆd = V T A(d 0 x) = 0, d 0 dˆ. x A-orthogonal projection Note: ˆx = x 0 + x ˆd = x ˆx Aˆd = A(d 0 x) = ˆr 3

4 E(ˆx) = ˆd T Aˆd ; E(x 0 ) = d T 0 Ad 0 ˆd 2 A = ˆd T Aˆd = (d 0 x) T A(d 0 x) = d 0 2 A + xt A x 2 x T Ad 0 = d 0 2 A xt A x + 2[ x T A x x T Ad 0 ] = d 0 2 A xt A x + 2 x T A( x d 0 ) }{{} } ˆr {{ } zero (2) A is nonsingular ; L = AK, i.e., W = AV G ; G := nonsingular where ν(x) = f Ax 2. Proof: ν(ˆx) = min ν(x) x x 0 +K r 0 rˆ residual projection methods. A x AK V T A T ˆr = 0 ; (ˆr L) ˆr = f A(x 0 + x) = r 0 A x = (I P AK )r 0 ; ˆr 2 r 0 2. One-Dimensional Projection Methods K = span{v} L = span{w} 4

5 Scheme: Do until convergence r = f Ax α = w T r/(w T Av) x := x + αv EndDo (a) Steepest descent algorithm A := s.p.d. v = w = r Do until convergence r = f Ax α = r 2 2 /(rt Ar) x := x + αr EndDo Each step in the above algorithm minimizes, Scheme: r = f Ax p = Ar Do until convergence α = r T r/p T r x := x + αr r := r αp p = Ar EndDo φ(x) = x x 2 A = (x x) T A(x x). Theorem: For the steepest descent scheme ( ) λmax λ min d k+ A λ max + λ min 5 d k A

6 where, d k = x x k, and λ min λ(a) λ max. Proof: d k+ 2 A = dt k+ Ad k+. But, d k+ = x x k+ = x (x k + α k r k ) i.e., d k+ = d k α k r k. Also, Ad k = A(x x k ) = f Ax k = r k, and d k = A r k. Consequently, Thus, d k+ 2 A = dt k+ A(d k α k r k ) = d T k+ r k α k r T k+ r k. }{{} zero But, Hence, or Note: d k+ 2 A = (d k α k r k ) T r k = d T k r k α k r T k r k = r T k A r k α k r T k r k. α k = (r T k r k)/(r T k Ar k). d k+ 2 A = rt k A r k (rt k r k) 2 [(r T k Ar k) ] = (r T r k 4 k A 2 r k ) (r T k A r k )(r T k Ar, k) d k+ 2 A = d k 2 A [ r k 4 2 (r T k A r k )(r T k Ar k) r T k A r k = r T k A AA r k = d T k Ad k. Now we resort to the Kantorovich inequality which states that for any x 0, (x T x) 2 (x T Ax)(x T A x) 4λ maxλ min (λ max + λ min ) 2. 6 ].

7 As a result, [ d k+ 2 A d k 2 A 4λ ] maxλ min (λ max + λ min ) 2 [ ] = d k 2 (λmax λ min ) 2 A. (λ max + λ min ) 2 Q.E.D. Kantorovich Inequality Let A be s.p.d., then (r T r) 2 (r T Ar)(r T A r) 4λ λ n (λ + λ n ) 2 where λ(a): λ λ 2 λ n. λ 0 Proof: Let Q T AQ = Λ =..., then 0 λ n σ(r) = = (r T r) 2 (r T Ar)(r T A r) = (r T QQ T r) 2 (r T Q Q T r)(r T Q Q T r) (s T s) 2 (s T s) 2 (s T s) ; s = QT r i.e., where, σ(r) = α(r) = 0 i= = α(r) β(r) 0 n λ i s 2 i n 2 s 2 C i A i= 0 CB A@ n i= ; θ n i = λ i θ i i= λ i s 2 i n i= s 2 C i A s 2 i 7

8 -- λ β* α λ n λ λ λ α = λ λ n β* λ λ λ n λ Therefore, β(r) = β = λ + = σ(r) = α(r) β(r) n i= λ i θ i ; θ i [ ] ( λ λ λ λ n λ n λ λ λ n (λ + λ n λ). min λ n λ λ ) (/λ) [(λ + λ n λ)/λ λ n ] = min λ d dλ [λ(λ + λ n ) λ 2 ] = (λ + λ n ) 2λ = 0 λ = 2 (λ + λ n ); d 2 ( ) = 2 < 0 dλ2 λ λ n σ(r) (λ 4 + λ n ) = 4λ λ 2 2 (λ + λ n ). 2 8 λ λ n [λ(λ + λ n ) λ 2 ]

9 Note: Q.E.D. [ d k+ 2 A λmax λ min λ max + λ min ( κ2 (A) = κ 2 (A) + where κ 2 (A) = λ max (A)/λ min (A). (Here A is s.p.d.) Minimal Residual Iteration ] 2 d k 2 A ) 2 d k 2 A A one-dimensional projection process for A nonsymmetric but with a s.p.d. symmetric part, i.e., 2 (A + AT ) is s.p.d. K = span{v} v = r L = span{w} w = Ar Scheme: Until convergence, Do: r = f Ax α = (r T Ar)/(r T A T Ar) x := x + αr Each step minimizes f Ax 2 2 in the relaxation direction r. Theorem: Let A s = 2 (A + AT ) be s.p.d., and let σ = A 2 = ρ /2 (A T A) µ = λ min (A s ), then ] r k+ 2 2 [ µ2 σ 2 r k 2 2 and the minimal residual iteration converges for any initial iterate x 0. 9

10 Proof: r k+ 2 2 = f A(x k + α k r k ) 2 2 = r k α k Ar k 2 2 = (r T k+ r k) α k (r T k+ Ar k) 0 r k+ L = r T k r k α k r T k Ar k Consider the eigenvalue problem = r k 2 2 (rt k Ar k) 2 (r T k AT Ar k ) = r k 2 2 [ (rt k Ar k) 2 r k 4 2 r k 2 2 Ar k 2 2 ]. where A ss = (A A T )/2, then Au = λu ; λ = ut Au u T u = ut (A s + A ss )u, u T u r k+ 2 2 r k 2 2 [ ] u σ 2 λ 2 T 2 A s u = λ 2 u T u min(a s ). [ λ 2 min (A s) r ] k 2 2. But Ar k 2 2 Ar k 2 2 A 2 2 r k 2 2 r k 2 2 = Ar k 2 2 A 2 2 σ. 2 0

11 Thus, Note that σ 2 > µ 2. [ r k+ 2 2 r k 2 2 λ2 min (A ] s) ) σ 2 = ( µ2 r k 2 2. σ 2 Q.E.D. Observation: From but r k+ 2 2 = r k 2 2 (rt k Ar k) 2 (r T k AT Ar k ) [ = r k 2 2 (rt k Ar k) (r T k AT Ar k ) rt k Ar ] k r T k r k r T k cos γ k = (Ar k) Ar k 2 r k 2 acute angle bet. r k & Ar k r k+ 2 2 = r k 2 2 [ cos2 γ k ] = r k 2 2 sin2 γ k. MR-iteration: r = f Ax p = Ar Do until convergence α = (r T p)/(p T p) x := x + αr r := r αp p = Ar EndDo Note: r k+ = r k α k p k.

12 Residual Norm Steepest Descent A := nonsingular (A + A T ) need not be s.p.d. K = span{v} v = A T r L = span{w} w = Ar Scheme: matrics 2 r = f Ax ; v = A T r α = (v T v)/(v T A T Av) = v 2 2 / Av x := x + αv Can we reduce the number of matrix-vector products? Hint: r new = f A(x + αv) = r αav. Modified scheme: r = f Ax. Do until convergence v := A T r z := Av α := v 2 2 / z 2 2 x := x + αv r := r αz EndDo 2

PETROV-GALERKIN METHODS

PETROV-GALERKIN METHODS Chapter 7 PETROV-GALERKIN METHODS 7.1 Energy Norm Minimization 7.2 Residual Norm Minimization 7.3 General Projection Methods 7.1 Energy Norm Minimization Saad, Sections 5.3.1, 5.2.1a. 7.1.1 Methods based

More information

Some definitions. Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization. A-inner product. Important facts

Some definitions. Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization. A-inner product. Important facts Some definitions Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization M. M. Sussman sussmanm@math.pitt.edu Office Hours: MW 1:45PM-2:45PM, Thack 622 A matrix A is SPD (Symmetric

More information

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis, 5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 10, 2011 T.M. Huang (NTNU) Conjugate Gradient Method October 10, 2011 1 / 36 Outline 1 Steepest

More information

7.2 Steepest Descent and Preconditioning

7.2 Steepest Descent and Preconditioning 7.2 Steepest Descent and Preconditioning Descent methods are a broad class of iterative methods for finding solutions of the linear system Ax = b for symmetric positive definite matrix A R n n. Consider

More information

Iterative Methods for Linear Systems of Equations

Iterative Methods for Linear Systems of Equations Iterative Methods for Linear Systems of Equations Projection methods (3) ITMAN PhD-course DTU 20-10-08 till 24-10-08 Martin van Gijzen 1 Delft University of Technology Overview day 4 Bi-Lanczos method

More information

Notes on Some Methods for Solving Linear Systems

Notes on Some Methods for Solving Linear Systems Notes on Some Methods for Solving Linear Systems Dianne P. O Leary, 1983 and 1999 and 2007 September 25, 2007 When the matrix A is symmetric and positive definite, we have a whole new class of algorithms

More information

Notes on PCG for Sparse Linear Systems

Notes on PCG for Sparse Linear Systems Notes on PCG for Sparse Linear Systems Luca Bergamaschi Department of Civil Environmental and Architectural Engineering University of Padova e-mail luca.bergamaschi@unipd.it webpage www.dmsa.unipd.it/

More information

TMA4180 Solutions to recommended exercises in Chapter 3 of N&W

TMA4180 Solutions to recommended exercises in Chapter 3 of N&W TMA480 Solutions to recommended exercises in Chapter 3 of N&W Exercise 3. The steepest descent and Newtons method with the bactracing algorithm is implemented in rosenbroc_newton.m. With initial point

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method Hung M Phan UMass Lowell April 13, 2017 Throughout, A R n n is symmetric and positive definite, and b R n 1 Steepest Descent Method We present the steepest descent method for

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

The Steepest Descent Algorithm for Unconstrained Optimization

The Steepest Descent Algorithm for Unconstrained Optimization The Steepest Descent Algorithm for Unconstrained Optimization Robert M. Freund February, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 1 Steepest Descent Algorithm The problem

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-3, 25 Outline Part 1 Introd., discretization

More information

Math 5630: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 2019

Math 5630: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 2019 Math 563: Conjugate Gradient Method Hung M. Phan, UMass Lowell March 29, 219 hroughout, A R n n is symmetric and positive definite, and b R n. 1 Steepest Descent Method We present the steepest descent

More information

Math 577 Assignment 7

Math 577 Assignment 7 Math 577 Assignment 7 Thanks for Yu Cao 1. Solution. The linear system being solved is Ax = 0, where A is a (n 1 (n 1 matrix such that 2 1 1 2 1 A =......... 1 2 1 1 2 and x = (U 1, U 2,, U n 1. By the

More information

Solutions and Notes to Selected Problems In: Numerical Optimzation by Jorge Nocedal and Stephen J. Wright.

Solutions and Notes to Selected Problems In: Numerical Optimzation by Jorge Nocedal and Stephen J. Wright. Solutions and Notes to Selected Problems In: Numerical Optimzation by Jorge Nocedal and Stephen J. Wright. John L. Weatherwax July 7, 2010 wax@alum.mit.edu 1 Chapter 5 (Conjugate Gradient Methods) Notes

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 9 Minimizing Residual CG

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Adaptive Beamforming Algorithms

Adaptive Beamforming Algorithms S. R. Zinka srinivasa_zinka@daiict.ac.in October 29, 2014 Outline 1 Least Mean Squares 2 Sample Matrix Inversion 3 Recursive Least Squares 4 Accelerated Gradient Approach 5 Conjugate Gradient Method Outline

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Iterative techniques in matrix algebra

Iterative techniques in matrix algebra Iterative techniques in matrix algebra Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan September 12, 2015 Outline 1 Norms of vectors and matrices 2 Eigenvalues and

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

Tsung-Ming Huang. Matrix Computation, 2016, NTNU

Tsung-Ming Huang. Matrix Computation, 2016, NTNU Tsung-Ming Huang Matrix Computation, 2016, NTNU 1 Plan Gradient method Conjugate gradient method Preconditioner 2 Gradient method 3 Theorem Ax = b, A : s.p.d Definition A : symmetric positive definite

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers..

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers.. EIGENVALUE PROBLEMS Background on eigenvalues/ eigenvectors / decompositions Perturbation analysis, condition numbers.. Power method The QR algorithm Practical QR algorithms: use of Hessenberg form and

More information

Problems of Eigenvalues/Eigenvectors

Problems of Eigenvalues/Eigenvectors 67 Problems of Eigenvalues/Eigenvectors Reveiw of Eigenvalues and Eigenvectors Gerschgorin s Disk Theorem Power and Inverse Power Methods Jacobi Transform for Symmetric Matrices Spectrum Decomposition

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 20 1 / 20 Overview

More information

Problems of Eigenvalues/Eigenvectors

Problems of Eigenvalues/Eigenvectors 5 Problems of Eigenvalues/Eigenvectors Reveiw of Eigenvalues and Eigenvectors Gerschgorin s Disk Theorem Power and Inverse Power Methods Jacobi Transform for Symmetric Matrices Singular Value Decomposition

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

IDR(s) as a projection method

IDR(s) as a projection method Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics IDR(s) as a projection method A thesis submitted to the Delft Institute

More information

ERROR AND SENSITIVTY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS. Perturbation analysis for linear systems (Ax = b)

ERROR AND SENSITIVTY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS. Perturbation analysis for linear systems (Ax = b) ERROR AND SENSITIVTY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS Conditioning of linear systems. Estimating errors for solutions of linear systems Backward error analysis Perturbation analysis for linear

More information

CHAPTER 5. Basic Iterative Methods

CHAPTER 5. Basic Iterative Methods Basic Iterative Methods CHAPTER 5 Solve Ax = f where A is large and sparse (and nonsingular. Let A be split as A = M N in which M is nonsingular, and solving systems of the form Mz = r is much easier than

More information

Typical Problem: Compute.

Typical Problem: Compute. Math 2040 Chapter 6 Orhtogonality and Least Squares 6.1 and some of 6.7: Inner Product, Length and Orthogonality. Definition: If x, y R n, then x y = x 1 y 1 +... + x n y n is the dot product of x and

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3 Felix Kwok February 27, 2004 Written Problems 1. (Heath E3.10) Let B be an n n matrix, and assume that B is both

More information

MTH 2032 SemesterII

MTH 2032 SemesterII MTH 202 SemesterII 2010-11 Linear Algebra Worked Examples Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2011 ii Contents Table of Contents

More information

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces.

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. Orthogonality Definition 1. Vectors x,y R n are said to be orthogonal (denoted x y)

More information

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University Lecture 17 Methods for System of Linear Equations: Part 2 Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department of

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2017) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] Inner products and Norms Inner product or dot product of 2 vectors u and v in R n : u.v = u 1 v 1 + u 2 v 2 + + u n v n Calculate u.v when u = 1 2 2 0 v = 1 0

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

1 Error analysis for linear systems

1 Error analysis for linear systems Notes for 2016-09-16 1 Error analysis for linear systems We now discuss the sensitivity of linear systems to perturbations. This is relevant for two reasons: 1. Our standard recipe for getting an error

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

Lecture # 20 The Preconditioned Conjugate Gradient Method

Lecture # 20 The Preconditioned Conjugate Gradient Method Lecture # 20 The Preconditioned Conjugate Gradient Method We wish to solve Ax = b (1) A R n n is symmetric and positive definite (SPD). We then of n are being VERY LARGE, say, n = 10 6 or n = 10 7. Usually,

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Nonlinear Programming Algorithms Handout

Nonlinear Programming Algorithms Handout Nonlinear Programming Algorithms Handout Michael C. Ferris Computer Sciences Department University of Wisconsin Madison, Wisconsin 5376 September 9 1 Eigenvalues The eigenvalues of a matrix A C n n are

More information

Large-scale eigenvalue problems

Large-scale eigenvalue problems ELE 538B: Mathematics of High-Dimensional Data Large-scale eigenvalue problems Yuxin Chen Princeton University, Fall 208 Outline Power method Lanczos algorithm Eigenvalue problems 4-2 Eigendecomposition

More information

7.3 The Jacobi and Gauss-Siedel Iterative Techniques. Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP.

7.3 The Jacobi and Gauss-Siedel Iterative Techniques. Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP. 7.3 The Jacobi and Gauss-Siedel Iterative Techniques Problem: To solve Ax = b for A R n n. Methodology: Iteratively approximate solution x. No GEPP. 7.3 The Jacobi and Gauss-Siedel Iterative Techniques

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist.

MIDTERM. b) [2 points] Compute the LU Decomposition A = LU or explain why one does not exist. MAE 9A / FALL 3 Maurício de Oliveira MIDTERM Instructions: You have 75 minutes This exam is open notes, books No computers, calculators, phones, etc There are 3 questions for a total of 45 points and bonus

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Course Notes: Week 4

Course Notes: Week 4 Course Notes: Week 4 Math 270C: Applied Numerical Linear Algebra 1 Lecture 9: Steepest Descent (4/18/11) The connection with Lanczos iteration and the CG was not originally known. CG was originally derived

More information

Orthogonalization and least squares methods

Orthogonalization and least squares methods Chapter 3 Orthogonalization and least squares methods 31 QR-factorization (QR-decomposition) 311 Householder transformation Definition 311 A complex m n-matrix R = [r ij is called an upper (lower) triangular

More information

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Leslie Foster 11-5-2012 We will discuss the FOM (full orthogonalization method), CG,

More information

Answer Keys For Math 225 Final Review Problem

Answer Keys For Math 225 Final Review Problem Answer Keys For Math Final Review Problem () For each of the following maps T, Determine whether T is a linear transformation. If T is a linear transformation, determine whether T is -, onto and/or bijective.

More information

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem min{f (x) : x R n }. The iterative algorithms that we will consider are of the form x k+1 = x k + t k d k, k = 0, 1,...

More information

Math 310 Final Exam Solutions

Math 310 Final Exam Solutions Math 3 Final Exam Solutions. ( pts) Consider the system of equations Ax = b where: A, b (a) Compute deta. Is A singular or nonsingular? (b) Compute A, if possible. (c) Write the row reduced echelon form

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

4.6 Iterative Solvers for Linear Systems

4.6 Iterative Solvers for Linear Systems 4.6 Iterative Solvers for Linear Systems Why use iterative methods? Virtually all direct methods for solving Ax = b require O(n 3 ) floating point operations. In practical applications the matrix A often

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method The minimization problem We are given a symmetric positive definite matrix R n n and a right hand side vector b R n We want to solve the linear system Find u R n such that

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

13-2 Text: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL Eigen2

13-2 Text: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL Eigen2 The QR algorithm The most common method for solving small (dense) eigenvalue problems. The basic algorithm: QR without shifts 1. Until Convergence Do: 2. Compute the QR factorization A = QR 3. Set A :=

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems Iterative Methods for Sparse Linear Systems Luca Bergamaschi e-mail: berga@dmsa.unipd.it - http://www.dmsa.unipd.it/ berga Department of Mathematical Methods and Models for Scientific Applications University

More information

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Krylov Space Methods Nonstationary sounds good Radu Trîmbiţaş Babeş-Bolyai University Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Introduction These methods are used both to solve

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is ECE 55, Fall 2007 Problem Set #4 Solution The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ Ax + Bu is x(t) e A(t ) x( ) + e A(t τ) Bu(τ)dτ () This formula is extremely important

More information

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1 Parallel Numerics, WT 2016/2017 5 Iterative Methods for Sparse Linear Systems of Equations page 1 of 1 Contents 1 Introduction 1.1 Computer Science Aspects 1.2 Numerical Problems 1.3 Graphs 1.4 Loop Manipulations

More information

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico Lecture 9 Errors in solving Linear Systems J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico J. Chaudhry (Zeb) (UNM) Math/CS 375 1 / 23 What we ll do: Norms and condition

More information

Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter 6 ( ), 7.1 Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

More information

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem

Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem Lecture 4 - The Gradient Method Objective: find an optimal solution of the problem min{f (x) : x R n }. The iterative algorithms that we will consider are of the form x k+1 = x k + t k d k, k = 0, 1,...

More information

Orthonormal Transformations and Least Squares

Orthonormal Transformations and Least Squares Orthonormal Transformations and Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 30, 2009 Applications of Qx with Q T Q = I 1. solving

More information

Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

More information

Krylov subspace methods for linear systems with tensor product structure

Krylov subspace methods for linear systems with tensor product structure Krylov subspace methods for linear systems with tensor product structure Christine Tobler Seminar for Applied Mathematics, ETH Zürich 19. August 2009 Outline 1 Introduction 2 Basic Algorithm 3 Convergence

More information

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm CS 622 Data-Sparse Matrix Computations September 19, 217 Lecture 9: Krylov Subspace Methods Lecturer: Anil Damle Scribes: David Eriksson, Marc Aurele Gilles, Ariah Klages-Mundt, Sophia Novitzky 1 Introduction

More information

C&O367: Nonlinear Optimization (Winter 2013) Assignment 4 H. Wolkowicz

C&O367: Nonlinear Optimization (Winter 2013) Assignment 4 H. Wolkowicz C&O367: Nonlinear Optimization (Winter 013) Assignment 4 H. Wolkowicz Posted Mon, Feb. 8 Due: Thursday, Feb. 8 10:00AM (before class), 1 Matrices 1.1 Positive Definite Matrices 1. Let A S n, i.e., let

More information

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps.

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps. Conjugate Gradient algorithm Need: A symmetric positive definite; Cost: 1 matrix-vector product per step; Storage: fixed, independent of number of steps. The CG method minimizes the A norm of the error,

More information

Math 504 (Fall 2011) 1. (*) Consider the matrices

Math 504 (Fall 2011) 1. (*) Consider the matrices Math 504 (Fall 2011) Instructor: Emre Mengi Study Guide for Weeks 11-14 This homework concerns the following topics. Basic definitions and facts about eigenvalues and eigenvectors (Trefethen&Bau, Lecture

More information

Lecture Notes to be used in conjunction with. 233 Computational Techniques

Lecture Notes to be used in conjunction with. 233 Computational Techniques Lecture Notes to be used in conjunction with 233 Computational Techniques István Maros Department of Computing Imperial College London V2.9e January 2008 CONTENTS i Contents 1 Introduction 1 2 Computation

More information

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22 Topics Review of lecture 2/ Error, Residual and Condition Number Review of lecture 2/6 Backward Error Analysis The General Case / 22 Theorem (Calculation of 2 norm of a symmetric matrix) If A = A t is

More information

Krylov subspace projection methods

Krylov subspace projection methods I.1.(a) Krylov subspace projection methods Orthogonal projection technique : framework Let A be an n n complex matrix and K be an m-dimensional subspace of C n. An orthogonal projection technique seeks

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Key words. GMRES method, convergence bounds, worst-case GMRES, ideal GMRES, field of values

Key words. GMRES method, convergence bounds, worst-case GMRES, ideal GMRES, field of values THE FIELD OF VALUES BOUNDS ON IDEAL GMRES JÖRG LIESEN AND PETR TICHÝ 27.03.2018) Abstract. A widely known result of Elman, and its improvements due to Starke, Eiermann and Ernst, gives a bound on the worst-case

More information

Math 290, Midterm II-key

Math 290, Midterm II-key Math 290, Midterm II-key Name (Print): (first) Signature: (last) The following rules apply: There are a total of 20 points on this 50 minutes exam. This contains 7 pages (including this cover page) and

More information

Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms

Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms Robert M. Gower and Peter Richtárik School of Mathematics University of Edinburgh United Kingdom ebruary 4, 06 Abstract

More information

Linear algebra review

Linear algebra review EE263 Autumn 2015 S. Boyd and S. Lall Linear algebra review vector space, subspaces independence, basis, dimension nullspace and range left and right invertibility 1 Vector spaces a vector space or linear

More information

arxiv: v3 [math.na] 23 Mar 2016

arxiv: v3 [math.na] 23 Mar 2016 Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms Robert M. Gower and Peter Richtárik arxiv:602.0768v3 [math.na] 23 Mar 206 School of Mathematics University of Edinburgh

More information